Tue 25 September 2012

09:10 Welcome
T H Hyde
University of Nottingham

09:20 Keynote 1
R Thomison
Loughborough University

10:10 Applicability of handbook crack propagation methods on TIG and Laser welded IN718 at room and elevated temperature for mixed mode loading and dwell-time conditions
T Månsson, M Hörnqvist, T Hansson, H Backström
Volvo Aero Corporation

11:00 Assessment of the Resistance to Weld Solidification Cracking of X65 Pipeline Steel Using a Transvarestraint Test
L Aucott¹, Shuwen Wen ², A Sullivan ², Hongbiao Dong ¹
¹University of Leicester, ²Tata Steel, UK

Session A1 – Design Codes, Standards and Weld Assessment Procedures

Session B1 – Fatigue and Creep-Fatigue Life Assessment

10:00 Improvements to Creep Fatigue Life Assessment of Alloy 800 High Temperature Retention Bolts
D Knowles¹, O Montgomery¹, D Dean²
¹Atkins, ²EDF Energy

10:35 Refreshments

11:00 Application of the linear matching method to creep-fatigue failure analysis of cruciform weldment manufactured of the austenitic steel AISI type 316N(L)
Y Gorash, Haofeng Chen
University of Strathclyde, Dep. of Mechanical & Aerospace Engineering
Session A2 -Weld Repair Performance

11:20 Discussion

11:25 The Weld Repair of Grade 91 Steel Without Post Weld Heat Treatment
 S J Brett¹ & K C Mitchell²
 ¹University of Nottingham, UK
 ²RWE npower

11:25 Internal Fatigue Fracture of an Austenitic Stainless Steel under High Temperature and High Cycle Region
 Y Takahashi, K Kanazawa, M Sugimoto
 Chuo University

11:45 Discussion

11:50 Weld Repairs in CrMoV Pipework Systems
 S J Brett
 University of Nottingham

11:50 Fracture energy model for prediction of creep-fatigue life in 9Cr martensitic steel
 Y Nagae
 Japan Atomic Energy Agency

12:10 Discussion

12:15 Weld repairs and component integrity issues
 D G Robertson and C Smith
 European Technology Development, Leatherhead, Surrey, UK

12:15 The Effect of Strain Rate on Low Cycle Fatigue with Hold Time in 9 Cr Rotor Steel
 Kuk-Cheol Kim, Young-Wha Ma, Byeong-Ook Kong, Min-Soo Kim and Sung-Tae Kang
 Doosan Heavy Industries & Construction, Co Ltd

12:35 Discussion

12:40 Lunch

Session A3 – Development of weld materials for high temperature service (1)

14:00 The efficiency of precipitation strengthening to HAZ of welded joints in W containing high Cr ferritic creep resistant steels
 T Sato¹, Y Hasegawa²
 ¹Touhoku University, ²Nippon Steel Corporation

14:00 High temperature low cycle fatigue behaviour of service-aged P91 material
 T Farragher¹, C Hyde², Wei Sun², T H Hyde², N O’Dowd³, S Scully³, S Leen¹
 ¹NUI Galway, ²University of Nottingham
 ³University of Limerick, ⁴ESB Energy International

14:20 Discussion
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Location</th>
</tr>
</thead>
</table>
| 14:25 | B2 | Micro-mechanical analysis of creep behaviour in a multipass weld | I Lvov, K Naumenko and H Altenbach
Otto von Guericke University
Magdeburg | National Institute for Materials Science |
| 14:45 | | Discussion | | |
| 14:50 | B3 | The use of refractory metals in high temperature and corrosive | C E D Rowe
Cedar Metals Limited | |
| | | environments | | |
| 15:10 | | Discussion | | |
| 15:15 | B3 | Creep Softening and Damage Process in Creep Strength Enhanced Ferritic| F Masuyama and T Yamaguchi
Kyushu Institute of Technology | |
| | | Steels | | |
| 15:35 | | Discussion | | |
| 15:40 | | Refreshments | | |
| 16:00 | B3 | Using small punch test data to determine creep strain and strength | S Holmström¹, P Auerkari¹ R Hurst¹, D Blagoeva³
¹VTT Technical Research Center of Finland, ²Swansea University, ³Nuclear research and Consultancy Group (NRG)The Netherlands |
| | | reduction properties for heat affected zones | | |
| 16:20 | | Discussion | | |
| 16:00 | A4 | Residual stress evaluation of a Ni based weld metal in the as welded | A Skouras, M J Pavier, M Peel, P Flewitt
University of Bristol | |
| | | and PWHT condition using the neutron diffraction method | | |
| 16:20 | | Discussion | | |
| 16:00 | A4 | Creep-Fatigue Crack Development in Dissimilar Metal Welded Joints | F Ehrhardt¹,²,³ S R Holdsworth¹, I Kühn³, E Mazza¹,²
²EMPA, ³ETH Zürich, ³ALSTOM Power | |
<p>| | | between Steels and a Nickel Base Alloy | | |
| | | | | |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:25</td>
<td>The Development of Finite Element Modelling Techniques to Determine Residual</td>
<td>S Bate, S May, K Stone, N Shallcross, I Symington</td>
</tr>
<tr>
<td></td>
<td>Stresses in Ferritic Welds</td>
<td>Serco</td>
</tr>
<tr>
<td>16:25</td>
<td>Difficulties in Interpreting Data from Creep Crack Growth Tests on Type 316H</td>
<td>D W Dean and L Allport</td>
</tr>
<tr>
<td></td>
<td>Weldments</td>
<td>EDF Energy Nuclear Generation Ltd</td>
</tr>
<tr>
<td>16:45</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>16:50</td>
<td>FE Simulation of Welding Residual Stresses in P91 and P92 Steel Pipes</td>
<td>A H Yaghi, T H Hyde, A A Becker and W Sun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Nottingham</td>
</tr>
<tr>
<td>16:50</td>
<td>Relationships between microstructure and grain boundary sliding during high-</td>
<td>K Thibault(^1)*, D Locq(^1), P Caron(^1), D Boivin(^1), Y Renollet(^1), Y Bréchet(^2)</td>
</tr>
<tr>
<td></td>
<td>temperature creep of a nickel-based superalloy</td>
<td>(^1) Onera – The French Aerospace Lab, (^2) SIMaP – INPG</td>
</tr>
<tr>
<td>17:10</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>17:10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:15</td>
<td>Effect of creep deformation on Z-phase formation in Gr.91 steel</td>
<td>K Sawada, H Kushima, M Tabuchi, K Kimura</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Institute for Materials Science</td>
</tr>
<tr>
<td>17:25</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>17:30</td>
<td>Welcome Drinks Reception</td>
<td></td>
</tr>
<tr>
<td>18:30</td>
<td>End of Day 1</td>
<td></td>
</tr>
</tbody>
</table>
Wed 26 September 2012

09.00 **Keynote 2**
Fracture Mechanics Based assessment of high temperature failure in welds
K Nikbin
Imperial College London

09.00 **Application of modern creep lifing techniques to a γ-TiAl alloy (Ti-45Al-2Mn-2Nb)**
Z Abdallah¹, M T Whittaker¹, M R Bache¹, M Dixon²
¹Swansea University, ²Rolls-Royce plc

09:20 **Discussion**

09:25 **Creep Life Assessment of Steam Methane Reformer Outlet Headers and Pigtails**
C E Jaske and S R Finneran
Det Norske Veritas (USA), Inc.

09:45 **Discussion**

09:50 **Natural PWSCC Crack Growth in Dissimilar Metal Welds With Inlay**
F W Brust, S Kalyanam, D-J Shim
Engineering Mechanics Corporation of Columbus

09:50 **Lifting of a polycrystalline nickel alloy under TMF loading**
M T Whittaker, R J Lancaster, C J Pretty, J P Jones
Swansea University

10:10 **Discussion**

10:15 **Evaluation of Fracture Mechanics Parameters for Bi-Material Compact Tension Specimens**
Haoliang Zhou*, A Mehmanparast, C M Davies, K M Nikbin
Imperial College London

10:15 **Creep life assessment of graphitised steam pipes**
K Chalk
European Technology Development, Leatherhead, Surrey, UK

10:35 **Discussion**

10:40 **Refreshments**

11:00 **C* integrals for a P91 pipe weld with circumferential cracks subjected to internal pressure and end load**
F Cortellino¹,², T H Hyde¹, W Sun¹, C Pappalettere²
¹University of Nottingham, ²Politecnico di Bari

11:00 **Analysis of PWR Hot Leg in Severe Accident Conditions: Creep Rupture and Tensile Instability Initiation Modeling**
H J Rathbun¹, M L Benson¹, R M Iyengar¹, F W Brust²
¹U.S. Nuclear Regulatory Commission, ²Engineering Mechanics Corporation of Columbus

Session A5 – High temperature cracks in welds

Session B6 – Materials Performance in Nuclear Applications
11:20 Discussion

Session A6 – Specialised test methods for weldments and material properties

11:25 Nanoindentation characterisation of P91 steel weldments mechanical properties and creep behaviour at operational temperatures
M Davies¹, N Everitt²
¹Micro Materials Ltd, ²University of Nottingham

11:45 Discussion

11:50 Measurement of local creep properties in stainless steel welds
Y Sakanashi, S Gungor, J Bouchard
The Open University

11:50 Creep behavior of plasma nitrided Ti6Al-4V alloy
V M C A Oliveira, C G Pinto, M C L Silva, P A Suzuki, M J R Barboza
Escola de Engenharia de Lorena, EEL-USP

12:10 Discussion

12:15 Use of Electrical Discharge Sampling Equipment for weld and base metal integrity assessment
J Fernandes, C Smith
European Technology Development, Leatherhead, Surrey, UK

12:15 Analysis on microstructural evolution of PtAl diffusion coating on Ni-based superalloy influenced by creep process
Kang Yuan¹, ², Ru Lin Peng¹, Xin-Hai Li², L Johansson³, S Johansson³, Yan-dong Wang³
¹Linköping University, ²Siemens Industrial Turbomachinery AB, ³Beijing Institute of Technology

12:35 Discussion

12:40 Lunch

13:40 Role of Composition in the Dynamic Strain Ageing and Creep Behaviour of 304 Stainless Steel
A. Wisbey, C Austin and L McVey
High Temperature Materials, AMEC Technical Services

14:00 Discussion
Session A7 – Development of weld materials for high temperature service (2)

14:05 Selecting and Measuring the Grain Size of Alloy 800H for Creep Applications
P Tait¹, M V Kral²
¹Methanex Corporation
²University of Canterbury

14:05 A new model for creep damage analysis and its application to creep crack growth simulations
Jian-Feng Wen¹,², Shan-Tung Tu³, Xin-Lin Gao ³, J N Reddy²
¹East China University of Science and Technology, ²Texas A&M University
³University of Texas at Dallas

Session B8 – Fracture and Damage at elevated temperature (1)

14:05 Discussion

14:30 Creep Deformation, Rupture and Ductility of Esshete 1250 Weld Metal.
M W Spindler and S L Spindler
EDF Energy

14:30 Experimental Analysis of Micro-Macro Creep Damage of Notched Specimens for P92 Steel
H Shigeyama, R Sugiura, T Matsuzaki, A Toshimitsu Yokobori Jr
Tohoku University

14:55 Discussion

15:00 Study of the cyclic thermal shock behaviour of welded joints
D Morán¹, A Fernández², C Palleiro³, Víctor Pintos³
¹AIMEN Technology Centre, ²ENCE Pontevedra, ³AIMEN Technology Centre
To be presented by Aurora Lopez

15:00 Guided wave transducer development for high temperature applications
A Mohimi, Tat-Hean Gan, W Balachandran and C Selcuk
Brunel University

15:15 Discussion

15:20 Discussion

15:40 Discussion

15:45 Discussion

15:45 Refreshments
<table>
<thead>
<tr>
<th>Time</th>
<th>Session A8 – Modelling and analysis methods for welds at high temperatures (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00</td>
<td>Creep Life Prediction for HAZ of Mod. 9Cr-1Mo Steels under Multi-axial Stress Conditions</td>
</tr>
<tr>
<td></td>
<td>K Yoshidaa(^1), M Yatomi(^1), M Tabuchib(^2) and K Kobayashic(^3)</td>
</tr>
<tr>
<td></td>
<td>(^1)IHI Corporation</td>
</tr>
<tr>
<td></td>
<td>(^2)National Institute of Materials Science</td>
</tr>
<tr>
<td></td>
<td>(^3)Chiba University</td>
</tr>
<tr>
<td>16:00</td>
<td>Change in Gamma Prime Morphology and Dislocation Substructure of Single Crystal Ni-based Superalloy CMSX-4</td>
</tr>
<tr>
<td></td>
<td>Prior-crept at 1273K-400MPa with Simple Aging</td>
</tr>
<tr>
<td></td>
<td>N Miura, K Kurita and Y Kondo</td>
</tr>
<tr>
<td></td>
<td>The National Defence Academy</td>
</tr>
<tr>
<td>16:20</td>
<td>Discussion</td>
</tr>
<tr>
<td>16:25</td>
<td>Creep-fatigue interaction testing of an experimental directionally solidified nickel-based superalloy</td>
</tr>
<tr>
<td></td>
<td>E Amsterdam</td>
</tr>
<tr>
<td></td>
<td>National Aerospace Laboratory NLR</td>
</tr>
<tr>
<td>16:45</td>
<td>Discussion</td>
</tr>
<tr>
<td>16:50</td>
<td>Analysis of Damage Behaviour Based on the EBSD Method under Creep-Fatigue Conditions for Polycrystalline Nickel-base Superalloys</td>
</tr>
<tr>
<td></td>
<td>D Kobayash(^1), M Miyabe(^1), Y Kagiya(^1), Y Nagumo(^2), R Sugiura(^2), T Matsuzaki(^2) and A T Yokobori Jr (^2)</td>
</tr>
<tr>
<td></td>
<td>(^1)Chubu Electric Power Co. Inc., (^2)Tohoku University</td>
</tr>
<tr>
<td>17:10</td>
<td>Discussion</td>
</tr>
<tr>
<td>17:15</td>
<td>Creep behaviour of Waspaloy under non-constant stress and temperature</td>
</tr>
<tr>
<td></td>
<td>W J Harrison, M T Whittaker, C Deen</td>
</tr>
<tr>
<td></td>
<td>Swansea University</td>
</tr>
<tr>
<td>17:35</td>
<td>Discussion</td>
</tr>
<tr>
<td>18:30</td>
<td>Pre-dinner Reception</td>
</tr>
<tr>
<td>17:00</td>
<td>Conference Dinner</td>
</tr>
<tr>
<td>21:30</td>
<td>End of Day 2</td>
</tr>
<tr>
<td>18:30</td>
<td>Pre-dinner Reception</td>
</tr>
<tr>
<td>17:00</td>
<td>Conference Dinner</td>
</tr>
<tr>
<td>21:30</td>
<td>End of Day 2</td>
</tr>
</tbody>
</table>
Thur 27 September 2012

Session B10 – Computational modelling of creep damage and fracture

09:00 Multi-axial Application of a Hyperbolic Sine Unified Viscoelasticity Constitutive Model to P91 Steel
R A Barrett1,3, P E O’Donoghue2,3, S B Leen1,3
1 Mechanical and Biomedical Engineering, College of Engineering and Informatics, NUI Galway,
2 Civil Engineering, College of Engineering and Informatics, NUI Galway,
3 Ryan Institute for Environmental, Marine and Energy Research, NUI Galway

09:20 Discussion

09:25 Keynote 3
Creep-fatigue performance of 9Cr martensitic steel welded components
A Shibli
European Technology Development, Leatherhead, UK

09:45 Discussion

09:50 Modelling of Creep Crack Growth in Power Plant Steels using the Liu and Murakami Damage Model
C J Hyde, W Sun, T H Hyde, M Saber and A A Becker
University of Nottingham

10:10 Discussion
Session A9 – High temperature testing, material data, microstructure and characterisation

10:15 **Effect of Welding by Induction on Microstructures and Mechanical Properties of an Industrial Low Carbon Steel**
L Lakhdar¹, B Zakaria²
¹University, ²LMSM, Biskra University

10:15 **A Strain Rate Dependent Model to Simulate Creep Crack initiation and Growth and Application to 316H Creep Fracture at 550°C**
N H Kim¹, Y J Kim¹*, C M Davies², K M Nikbin² and D W Dean³
¹Mechanical Engineering, Korea University, Korea, ²Mechanical engineering, Imperial College, UK
³EDF Energy, UK

10:35 Discussion

10:40 Refreshments

11:00 **Characterisation of dissimilar welds between ferritic/martensitic steels and Ni-base alloy**
M Speicher, T Klein, F Kauffmann, A Klenk, K Maile
Materialprüfungsanstalt Universität Stuttgart

11:00 **A Computational Study of Oxygen Diffusion and Crack Growth for a Nickel-Based Superalloy under Fatigue-Oxidation Conditions**
A Karabela¹, L G Zhao¹, B Lin¹, J Tong¹, M C Hardy²
¹University of Portsmouth, ²Rolls-Royce plc

11:20 Discussion

11:25 **Modelling of creep in friction stir welded copper**
R Sandström¹², H Östling², Lai-Zhe Jina¹
¹Royal Institute of Technology (KTH), ²Swerea KIMAB

11:25 **Effective optimisation procedures for determining the Chaboche unified visco-plasticity model material constants from isothermal P91 steel experimental data**
J P Rouse*, C J Hyde, W Sun, T H Hyde
University of Nottingham

11:45 Discussion

11:50 **Creep Damage Modelling of a P92 Pipe Weld at 675°C**
D W J Tanner, M Puliyathan, W Sun and T H Hyde
University of Nottingham

11:50 ‘CRACKFIT’ - procedure & software for crack assessments in low and high temperature industrial plants
F Akther and S Haligonghde
European Technology Development, Leatherhead, Surrey, UK

Session B11 – Fracture and Damage at elevated temperature (2)

11:00 **Characterisation of dissimilar welds between ferritic/martensitic steels and Ni-base alloy**
M Speicher, T Klein, F Kauffmann, A Klenk, K Maile
Materialprüfungsanstalt Universität Stuttgart

11:00 **A Computational Study of Oxygen Diffusion and Crack Growth for a Nickel-Based Superalloy under Fatigue-Oxidation Conditions**
A Karabela¹, L G Zhao¹, B Lin¹, J Tong¹, M C Hardy²
¹University of Portsmouth, ²Rolls-Royce plc

11:20 Discussion

11:25 **Modelling of creep in friction stir welded copper**
R Sandström¹², H Östling², Lai-Zhe Jina¹
¹Royal Institute of Technology (KTH), ²Swerea KIMAB

11:25 **Effective optimisation procedures for determining the Chaboche unified visco-plasticity model material constants from isothermal P91 steel experimental data**
J P Rouse*, C J Hyde, W Sun, T H Hyde
University of Nottingham

11:45 Discussion

11:50 **Creep Damage Modelling of a P92 Pipe Weld at 675°C**
D W J Tanner, M Puliyathan, W Sun and T H Hyde
University of Nottingham

11:50 ‘CRACKFIT’ - procedure & software for crack assessments in low and high temperature industrial plants
F Akther and S Haligonghde
European Technology Development, Leatherhead, Surrey, UK
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:10</td>
<td>Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td>Elevated temperature nano-mechanical characterisation of welds in aluminium alloys for multi-scale thermo-mechanical fatigue model optimisation</td>
<td>V Farinha Marques, D De Bono, T London, TWI Ltd</td>
<td></td>
</tr>
<tr>
<td>12:35</td>
<td>Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:40</td>
<td>Lunch and Depart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td>Creep Crack Growth Predictions of Mod. 9Cr-1Mo at 600OC</td>
<td>N H Kim(^1), J J Han(^1), Y J Kim(^1), W G Kim(^2), H Y Lee(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Mechanical engineering, Korea University, Korea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Korea Atomic Energy Research institute, Korea</td>
<td></td>
</tr>
</tbody>
</table>